Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(6): 1274-1283, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315521

RESUMO

Cardiac transcription factors (TFs) directly reprogram fibroblasts into induced cardiomyocytes (iCMs), where MEF2C acts as a pioneer factor with GATA4 and TBX5 (GT). However, the generation of functional and mature iCMs is inefficient, and the molecular mechanisms underlying this process remain largely unknown. Here, we found that the overexpression of transcriptionally activated MEF2C via fusion of the powerful MYOD transactivation domain combined with GT increased the generation of beating iCMs by 30-fold. Activated MEF2C with GT generated iCMs that were transcriptionally, structurally, and functionally more mature than those generated by native MEF2C with GT. Mechanistically, activated MEF2C recruited p300 and multiple cardiogenic TFs to cardiac loci to induce chromatin remodeling. In contrast, p300 inhibition suppressed cardiac gene expression, inhibited iCM maturation, and decreased the beating iCM numbers. Splicing isoforms of MEF2C with similar transcriptional activities did not promote functional iCM generation. Thus, MEF2C/p300-mediated epigenetic remodeling promotes iCM maturation.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição MEF2 , Miócitos Cardíacos , Fatores de Transcrição de p300-CBP , Epigênese Genética , Epigenômica , Fibroblastos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição de p300-CBP/genética
2.
J Cardiol ; 82(2): 128-133, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37141938

RESUMO

Machine learning is a subfield of artificial intelligence. The quality and versatility of machine learning have been rapidly improving and playing a critical role in many aspects of social life. This trend is also observed in the medical field. Generally, there are three main types of machine learning: supervised, unsupervised, and reinforcement learning. Each type of learning is adequately selected for the purpose and type of data. In the field of medicine, various types of information are collected and used, and research using machine learning is becoming increasingly relevant. Many clinical studies are conducted using electronic health and medical records, including in the cardiovascular area. Machine learning has also been applied in basic research. Machine learning has been widely used for several types of data analysis, such as clustering of microarray analysis and RNA sequence analysis. Machine learning is essential for genome and multi-omics analyses. This review summarizes the recent advancements in the use of machine learning in clinical applications and basic cardiovascular research.


Assuntos
Inteligência Artificial , Cardiologia , Humanos , Aprendizado de Máquina
3.
Biochem Biophys Res Commun ; 632: 181-188, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36215905

RESUMO

The number of patients with heart failure and related deaths is rapidly increasing worldwide, making it a major problem. Cardiac hypertrophy is a crucial preliminary step in heart failure, but its treatment has not yet been fully successful. In this study, we established a system to evaluate cardiomyocyte hypertrophy using a deep learning-based high-throughput screening system and identified drugs that inhibit it. First, primary cultured cardiomyocytes from neonatal rats were stimulated by both angiotensin II and endothelin-1, and cellular images were captured using a phase-contrast microscope. Subsequently, we used a deep learning model for instance segmentation and established a system to automatically and unbiasedly evaluate the cardiomyocyte size and perimeter. Using this system, we screened 100 FDA-approved drugs library and identified 12 drugs that inhibited cardiomyocyte hypertrophy. We focused on ezetimibe, a cholesterol absorption inhibitor, that inhibited cardiomyocyte hypertrophy in a dose-dependent manner in vitro. Additionally, ezetimibe improved the cardiac dysfunction induced by pressure overload in mice. These results suggest that the deep learning-based system is useful for the evaluation of cardiomyocyte hypertrophy and drug screening, leading to the development of new treatments for heart failure.


Assuntos
Cardiomegalia , Aprendizado Profundo , Avaliação Pré-Clínica de Medicamentos , Insuficiência Cardíaca , Animais , Camundongos , Ratos , Angiotensina II/farmacologia , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/tratamento farmacológico , Células Cultivadas , Colesterol , Avaliação Pré-Clínica de Medicamentos/métodos , Endotelina-1 , Ezetimiba , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos
4.
Nat Commun ; 13(1): 5409, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109509

RESUMO

Failure of the right ventricle plays a critical role in any type of heart failure. However, the mechanism remains unclear, and there is no specific therapy. Here, we show that the right ventricle predominantly expresses alternative complement pathway-related genes, including Cfd and C3aR1. Complement 3 (C3)-knockout attenuates right ventricular dysfunction and fibrosis in a mouse model of right ventricular failure. C3a is produced from C3 by the C3 convertase complex, which includes the essential component complement factor D (Cfd). Cfd-knockout mice also show attenuation of right ventricular failure. Moreover, the plasma concentration of CFD correlates with the severity of right ventricular failure in patients with chronic right ventricular failure. A C3a receptor (C3aR) antagonist dramatically improves right ventricular dysfunction in mice. In summary, we demonstrate the crucial role of the C3-Cfd-C3aR axis in right ventricular failure and highlight potential therapeutic targets for right ventricular failure.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Animais , Complemento C3/genética , Convertases de Complemento C3-C5 , Fator D do Complemento , Insuficiência Cardíaca/genética , Camundongos , Camundongos Knockout , Remodelação Ventricular
5.
Nat Cell Biol ; 23(5): 467-475, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33941892

RESUMO

Direct cardiac reprogramming of fibroblasts to cardiomyocytes presents an attractive therapeutic strategy to restore cardiac function following injury. Cardiac reprogramming was initially achieved through overexpression of the transcription factors Gata4, Mef2c and Tbx5; later, Hand2 and Akt1 were found to further enhance this process1-5. Yet, staunch epigenetic barriers severely limit the ability of these cocktails to reprogramme adult fibroblasts6,7. We undertook a screen of mammalian gene regulatory factors to discover novel regulators of cardiac reprogramming in adult fibroblasts and identified the histone reader PHF7 as the most potent activating factor8. Mechanistically, PHF7 localizes to cardiac super enhancers in fibroblasts, and through cooperation with the SWI/SNF complex, it increases chromatin accessibility and transcription factor binding at these sites. Furthermore, PHF7 recruits cardiac transcription factors to activate a positive transcriptional autoregulatory circuit in reprogramming. Importantly, PHF7 achieves efficient reprogramming in the absence of Gata4. Here, we highlight the underexplored necessity of cardiac epigenetic readers, such as PHF7, in harnessing chromatin remodelling and transcriptional complexes to overcome critical barriers to direct cardiac reprogramming.


Assuntos
Fator de Transcrição GATA4/metabolismo , Histonas/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Reprogramação Celular , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequências Reguladoras de Ácido Nucleico/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Nat Commun ; 12(1): 257, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431893

RESUMO

Advances in deep learning technology have enabled complex task solutions. The accuracy of image classification tasks has improved owing to the establishment of convolutional neural networks (CNN). Cellular senescence is a hallmark of ageing and is important for the pathogenesis of ageing-related diseases. Furthermore, it is a potential therapeutic target. Specific molecular markers are used to identify senescent cells. Moreover senescent cells show unique morphology, which can be identified. We develop a successful morphology-based CNN system to identify senescent cells and a quantitative scoring system to evaluate the state of endothelial cells by senescence probability output from pre-trained CNN optimised for the classification of cellular senescence, Deep Learning-Based Senescence Scoring System by Morphology (Deep-SeSMo). Deep-SeSMo correctly evaluates the effects of well-known anti-senescent reagents. We screen for drugs that control cellular senescence using a kinase inhibitor library by Deep-SeSMo-based drug screening and identify four anti-senescent drugs. RNA sequence analysis reveals that these compounds commonly suppress senescent phenotypes through inhibition of the inflammatory response pathway. Thus, morphology-based CNN system can be a powerful tool for anti-senescent drug screening.


Assuntos
Forma Celular , Senescência Celular , Aprendizado Profundo , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Redes Neurais de Computação , beta-Galactosidase/metabolismo
7.
Sci Rep ; 10(1): 21467, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293623

RESUMO

In deep burns, early wound closure is important for healing, and skin grafting is mainly used for wound closure. However, it is difficult to achieve early wound closure in extensive total body surface area deep burns due to the lack of donor sites. Dermal fibroblasts, responsible for dermis formation, may be lost in deep burns. However, fat layers composed of adipocytes, lying underneath the dermis, are retained even in such cases. Direct reprogramming is a novel method for directly reprograming some cells into other types by introducing specific master regulators; it has exhibited appreciable success in various fields. In this study, we aimed to assess whether the transfection of master regulators (ELF4, FOXC2, FOXO1, IRF1, PRRX1, and ZEB1) could reprogram mouse adipocytes into dermal fibroblast-like cells. Our results indicated the shrinkage of fat droplets in reprogrammed mouse adipocytes and their transformation into spindle-shaped dermal fibroblasts. Reduced expression of PPAR-2, c/EBP, aP2, and leptin, the known markers of adipocytes, in RT-PCR, and enhanced expression of anti-ER-TR7, the known anti-fibroblast marker, in immunocytochemistry, were confirmed in the reprogrammed mouse adipocytes. The dermal fibroblast-like cells, reported here, may open up a new treatment mode for enabling early closure of deep burn wounds.


Assuntos
Adipócitos/citologia , Técnicas de Reprogramação Celular/métodos , Derme/citologia , Fibroblastos/citologia , Adipócitos/metabolismo , Animais , Células Cultivadas , Derme/metabolismo , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transfecção/métodos
8.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155842

RESUMO

Skeletal muscle comprises 30-40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.


Assuntos
Envelhecimento/fisiologia , Senescência Celular , Desenvolvimento Muscular , Músculo Esquelético/citologia , Doenças Musculares/terapia , Regeneração , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/fisiopatologia , Células-Tronco/fisiologia
9.
Cell Stem Cell ; 25(1): 69-86.e5, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31080136

RESUMO

The cardiogenic transcription factors (TFs) Mef2c, Gata4, and Tbx5 can directly reprogram fibroblasts to induced cardiac-like myocytes (iCLMs), presenting a potential source of cells for cardiac repair. While activity of these TFs is enhanced by Hand2 and Akt1, their genomic targets and interactions during reprogramming are not well studied. We performed genome-wide analyses of cardiogenic TF binding and enhancer profiling during cardiac reprogramming. We found that these TFs synergistically activate enhancers highlighted by Mef2c binding sites and that Hand2 and Akt1 coordinately recruit other TFs to enhancer elements. Intriguingly, these enhancer landscapes collectively resemble patterns of enhancer activation during embryonic cardiogenesis. We further constructed a cardiac reprogramming gene regulatory network and found repression of EGFR signaling pathway genes. Consistently, chemical inhibition of EGFR signaling augmented reprogramming. Thus, by defining epigenetic landscapes these findings reveal synergistic transcriptional activation across a broad landscape of cardiac enhancers and key signaling pathways that govern iCLM reprogramming.


Assuntos
Receptores ErbB/metabolismo , Fibroblastos/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Reprogramação Celular , Receptores ErbB/genética , Fator de Transcrição GATA4/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas com Domínio T/genética
10.
Nat Rev Cardiol ; 15(10): 585-600, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29872165

RESUMO

Ischaemic heart disease is a leading cause of death worldwide. Injury to the heart is followed by loss of the damaged cardiomyocytes, which are replaced with fibrotic scar tissue. Depletion of cardiomyocytes results in decreased cardiac contraction, which leads to pathological cardiac dilatation, additional cardiomyocyte loss, and mechanical dysfunction, culminating in heart failure. This sequential reaction is defined as cardiac remodelling. Many therapies have focused on preventing the progressive process of cardiac remodelling to heart failure. However, after patients have developed end-stage heart failure, intervention is limited to heart transplantation. One of the main reasons for the dramatic injurious effect of cardiomyocyte loss is that the adult human heart has minimal regenerative capacity. In the past 2 decades, several strategies to repair the injured heart and improve heart function have been pursued, including cellular and noncellular therapies. In this Review, we discuss current therapeutic approaches for cardiac repair and regeneration, describing outcomes, limitations, and future prospects of preclinical and clinical trials of heart regeneration. Substantial progress has been made towards understanding the cellular and molecular mechanisms regulating heart regeneration, offering the potential to control cardiac remodelling and redirect the adult heart to a regenerative state.


Assuntos
Terapia Genética/métodos , Cardiopatias/terapia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Miocárdio/patologia , Regeneração , Transplante de Células-Tronco/métodos , Remodelação Ventricular , Animais , Cardiopatias/genética , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Recuperação de Função Fisiológica , Resultado do Tratamento
11.
Genes Dev ; 31(17): 1770-1783, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982760

RESUMO

Direct reprogramming of fibroblasts to cardiomyocytes represents a potential means of restoring cardiac function following myocardial injury. AKT1 in the presence of four cardiogenic transcription factors, GATA4, HAND2, MEF2C, and TBX5 (AGHMT), efficiently induces the cardiac gene program in mouse embryonic fibroblasts but not adult fibroblasts. To identify additional regulators of adult cardiac reprogramming, we performed an unbiased screen of transcription factors and cytokines for those that might enhance or suppress the cardiogenic activity of AGHMT in adult mouse fibroblasts. Among a collection of inducers and repressors of cardiac reprogramming, we discovered that the zinc finger transcription factor 281 (ZNF281) potently stimulates cardiac reprogramming by genome-wide association with GATA4 on cardiac enhancers. Concomitantly, ZNF281 suppresses expression of genes associated with inflammatory signaling, suggesting the antagonistic convergence of cardiac and inflammatory transcriptional programs. Consistent with an inhibitory influence of inflammatory pathways on cardiac reprogramming, blockade of these pathways with anti-inflammatory drugs or components of the nucleosome remodeling deacetylase (NuRD) complex, which associate with ZNF281, stimulates cardiac gene expression. We conclude that ZNF281 acts at a nexus of cardiac and inflammatory gene programs, which exert opposing influences on fibroblast to cardiac reprogramming.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição/metabolismo , Anti-Inflamatórios/farmacologia , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/fisiologia , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteínas Repressoras , Transcriptoma
12.
Biochem Biophys Rep ; 9: 245-256, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28956012

RESUMO

Andersen-Tawil syndrome (ATS) is a rare inherited channelopathy. The cardiac phenotype in ATS is typified by a prominent U wave and ventricular arrhythmia. An effective treatment for this disease remains to be established. We reprogrammed somatic cells from three ATS patients to generate induced pluripotent stem cells (iPSCs). Multi-electrode arrays (MEAs) were used to record extracellular electrograms of iPSC-derived cardiomyocytes, revealing strong arrhythmic events in the ATS-iPSC-derived cardiomyocytes. Ca2+ imaging of cells loaded with the Ca2+ indicator Fluo-4 enabled us to examine intracellular Ca2+ handling properties, and we found a significantly higher incidence of irregular Ca2+ release in the ATS-iPSC-derived cardiomyocytes than in control-iPSC-derived cardiomyocytes. Drug testing using ATS-iPSC-derived cardiomyocytes further revealed that antiarrhythmic agent, flecainide, but not the sodium channel blocker, pilsicainide, significantly suppressed these irregular Ca2+ release and arrhythmic events, suggesting that flecainide's effect in these cardiac cells was not via sodium channels blocking. A reverse-mode Na+/Ca2+exchanger (NCX) inhibitor, KB-R7943, was also found to suppress the irregular Ca2+ release, and whole-cell voltage clamping of isolated guinea-pig cardiac ventricular myocytes confirmed that flecainide could directly affect the NCX current (INCX). ATS-iPSC-derived cardiomyocytes recapitulate abnormal electrophysiological phenotypes and flecainide suppresses the arrhythmic events through the modulation of INCX.

13.
FEBS Lett ; 591(18): 2879-2889, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28805244

RESUMO

The expression of pluripotency genes fluctuates in a population of embryonic stem (ES) cells and the fluctuations in the expression of some pluripotency genes correlate. However, no correlation in the fluctuation of Pou5f1, Zfp42, and Nanog expression was observed in ES cells. Correlation between Pou5f1 and Zfp42 fluctuations was demonstrated in ES cells containing a knockout in the NuRD component Mbd3. ES cells containing a triple knockout in the DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b showed correlation between the fluctuation of Pou5f1, Zfp42, and Nanog gene expression. We suggest that an epigenetic barrier is key to preventing the propagation of fluctuating pluripotency gene expression in ES cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Animais , Epigenômica , Expressão Gênica/genética , Camundongos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética
14.
Sci Rep ; 7: 44312, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290476

RESUMO

Alteration of the nuclear Ca2+ transient is an early event in cardiac remodeling. Regulation of the nuclear Ca2+ transient is partly independent of the cytosolic Ca2+ transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca2+ homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca2+ transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca2+ transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca2+ transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca2+ transient. Thus, emerin and the nuclear Ca2+ transient are possible therapeutic targets in heart failure and EDMD.


Assuntos
Cálcio/metabolismo , Cardiomegalia/genética , Proteínas de Membrana/genética , Distrofia Muscular de Emery-Dreifuss/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Angiotensina II/farmacologia , Compostos de Anilina/química , Animais , Remodelamento Atrial , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Modelos Animais de Doenças , Endotelina-1/farmacologia , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fenilefrina/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Ventricular , Xantenos/química
15.
Stem Cell Reports ; 8(3): 548-560, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28262548

RESUMO

Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.


Assuntos
Reprogramação Celular/genética , Diaminas/farmacologia , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Tiazóis/farmacologia , Ativação Transcricional , Animais , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular , Reprogramação Celular/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Transcriptoma
16.
Sci Rep ; 6: 34198, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677334

RESUMO

SCN5A is abundant in heart and has a major role in INa. Loss-of-function mutation in SCN5A results in Brugada syndrome (BrS), which causes sudden death in adults. It remains unclear why disease phenotype does not manifest in the young even though mutated SCN5A is expressed in the young. The aim of the present study is to elucidate the timing of the disease manifestation in BrS. A gain-of-function mutation in SCN5A also results in Long QT syndrome type 3 (LQTS3), leading to sudden death in the young. Induced pluripotent stem cells (iPSCs) were generated from a patient with a mixed phenotype of LQTS3 and BrS with the E1784K SCN5A mutation. Here we show that electrophysiological analysis revealed that LQTS3/BrS iPSC-derived cardiomyocytes recapitulate the phenotype of LQTS3 but not BrS. Each ß-subunit of the sodium channel is differentially expressed in embryonic and adult hearts. SCN3B is highly expressed in embryonic hearts and iPSC-derived cardiomyocytes. A heterologous expression system revealed that INa of mutated SCN5A is decreased and SCN3B augmented INa of mutated SCN5A. Knockdown of SCN3B in LQTS3/BrS iPSC-derived cardiomyocytes successfully unmasked the phenotype of BrS. Isogenic control of LQTS3/BrS (corrected-LQTS3/BrS) iPSC-derived cardiomyocytes gained the normal electrophysiological properties.

17.
Stem Cell Reports ; 6(6): 825-833, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27237376

RESUMO

Embryonic stem cells (ESCs) are a hallmark of ideal pluripotent stem cells. Epigenetic reprogramming of induced pluripotent stem cells (iPSCs) has not been fully accomplished. iPSC generation is similar to somatic cell nuclear transfer (SCNT) in oocytes, and this procedure can be used to generate ESCs (SCNT-ESCs), which suggests the contribution of oocyte-specific constituents. Here, we show that the mammalian oocyte-specific linker histone H1foo has beneficial effects on iPSC generation. Induction of H1foo with Oct4, Sox2, and Klf4 significantly enhanced the efficiency of iPSC generation. H1foo promoted in vitro differentiation characteristics with low heterogeneity in iPSCs. H1foo enhanced the generation of germline-competent chimeric mice from iPSCs in a manner similar to that for ESCs. These findings indicate that H1foo contributes to the generation of higher-quality iPSCs.


Assuntos
Reprogramação Celular , Epigênese Genética , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Oócitos/metabolismo , Animais , Quimerismo , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oócitos/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
18.
Biochem Biophys Res Commun ; 464(4): 1000-1007, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26168730

RESUMO

The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle.


Assuntos
Coração Fetal/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Animais , Pontos de Checagem do Ciclo Celular/genética , Movimento Celular , Proliferação de Células , Feminino , Coração Fetal/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Coração/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez
20.
FEBS Open Bio ; 5: 219-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853038

RESUMO

Mitochondrial diseases are heterogeneous disorders, caused by mitochondrial dysfunction. Mitochondria are not regulated solely by nuclear genomic DNA but by mitochondrial DNA. It is difficult to develop effective therapies for mitochondrial disease because of the lack of mitochondrial disease models. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major mitochondrial diseases. The aim of this study was to generate MELAS-specific induced pluripotent stem cells (iPSCs) and to demonstrate that MELAS-iPSCs can be models for mitochondrial disease. We successfully established iPSCs from the primary MELAS-fibroblasts carrying 77.7% of m.3243A>G heteroplasmy. MELAS-iPSC lines ranged from 3.6% to 99.4% of m.3243A>G heteroplasmy levels. The enzymatic activities of mitochondrial respiratory complexes indicated that MELAS-iPSC-derived fibroblasts with high heteroplasmy levels showed a deficiency of complex I activity but MELAS-iPSC-derived fibroblasts with low heteroplasmy levels showed normal complex I activity. Our data indicate that MELAS-iPSCs can be models for MELAS but we should carefully select MELAS-iPSCs with appropriate heteroplasmy levels and respiratory functions for mitochondrial disease modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...